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Recent work has shown the effectiveness of structure-

prediction methods in solving difficult molecular-replacement

problems. The Rosetta protein structure modeling suite can aid

in the solution of difficult molecular-replacement problems

using templates from 15 to 25% sequence identity; Rosetta

refinement guided by noisy density has consistently led to

solved structures where other methods fail. In this paper, an

overview of the use of Rosetta for these difficult molecular-

replacement problems is provided and new modeling devel-

opments that further improve model quality are described.

Several variations to the method are introduced that

significantly reduce the time needed to generate a model

and the sampling required to improve the starting template.

The improvements are benchmarked on a set of nine difficult

cases and it is shown that this improved method obtains

consistently better models in less running time. Finally,

strategies for best using Rosetta to solve difficult molecular-

replacement problems are presented and future directions for

the role of structure-prediction methods in crystallography are

discussed.
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1. Introduction

Rosetta (Rohl et al., 2004; Das & Baker, 2008; Leaver-Fay et

al., 2011) has evolved as a comprehensive tool for protein

structure modeling, including tools for ab initio structure

prediction, protein–protein and protein–ligand docking, loop

modeling and structure refinement, as well as for designing

proteins with new functionalities. While diverse, the compo-

nents that unite these disparate protocols are (i) the Rosetta

energy function and (ii) Monte Carlo and gradient-based

methods for exploring protein conformational space. Rosetta’s

energy function (Kuhlman et al., 2003) evaluates the physical

feasibility of a protein’s conformation and consists of both

physical and statistical energy terms; sampling methods aim

to find the protein conformation that minimizes this energy

function.

Although Rosetta’s energy function often shows a funnel

to the native conformation (Tyka et al., 2011), for structures

larger than 100 residues complete exploration of protein

conformational space is intractable (Bradley et al., 2005).

Previous work has shown that comparative modeling and even

ab initio modeling using Rosetta may be used to solve difficult

molecular-replacement problems in cases where any available

template structure may not. In several cases protein structures

modeled by Rosetta were more suitable for molecular

replacement than were the templates, although the results

were inconsistent (Qian et al., 2007; Das & Baker, 2009).

However, when experimental data, even sparse or noisy

data such as cryo-EM density (DiMaio et al., 2009) or NMR
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chemical shift data (Raman et al., 2010), are available they can

dramatically limit the size of the conformational space one has

to consider, making previously intractable modeling problems

feasible. Recent work has shown that combining Rosetta’s

comparative modeling with density- and energy-guided

refinement may also be used to aid in the solution of difficult

molecular-replacement problems with much greater consis-

tency than previous work (DiMaio et al., 2011). This approach,

called MR-Rosetta, increases the success rate of molecular

replacement when starting from 15–30% sequence-identical

templates. This manuscript briefly describes the MR-Rosetta

rebuilding and refinement process and then introduces

improvements to the modeling protocol to better handle

misalignments and deviations between the template and target

structures. We also describe several improvements aimed at

faster model generation. Finally, we test these improvements

on a benchmark set of nine molecular-replacement cases.

2. Methods

An overview of the protocol used by MR-Rosetta is shown

in Fig. 1(a). The process begins by identifying homologous

structures and alignments using HHsearch (Söding, 2005).

Threaded models, in which all unaligned residues are removed

and non-identically aligned residues are mutated (similar to

what is described in Bunkóczi & Read, 2011), are then

generated from an ensemble of homologous structures. Using

the molecular-replacement program Phaser (McCoy et al.,

2007), we identify a number of potential molecular-replace-

ment solutions; up to five MR solutions from each of up to 20

templates are considered. For each solution, we use the model

to phase the data; these maps are used to guide subsequent

sampling steps.

In the next stage, Rosetta is used to rebuild gaps in the

sequence alignment as well as to refine the entire structure

against Rosetta’s all-atom energy, guided by the density.

The rebuilding step from DiMaio et al. (2011) is illustrated in

Fig. 2(a). Rebuilding uses Monte Carlo sampling of backbone

‘fragments’ taken from structures with similar local sequence.

Backbone movement propagates to a ‘cutpoint’ and a

geometric chain-closure algorithm (Canutescu & Dunbrack,

2003) was used to create an unbroken chain model. This model

is then evaluated against the density and accepted or rejected

using the Metropolis criterion; thousands of backbone

conformations are sampled this way in a single trajectory. In

an MR-Rosetta run, all unaligned segments that are eight

residues or shorter are sampled in this manner. During this

stage, residues aligned to the template (aside from 2–5 resi-

dues immediately adjacent to gapped regions) are not allowed

to move and each gapped region is sampled independently.

For each candidate MR solution, many (generally tens to

hundreds of) conformations are rebuilt and refined. Each
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Figure 1
(a) An overview of the approach used by MR-Rosetta to refine models against noisy density data resulting from difficult molecular-replacement
problems. In addition to identifying the correct solution from among a list of candidates, MR-Rosetta is often able to improve the model enough so that
automatic chain tracing can solve (or very nearly solve) the structure. (b) How Rosetta combines sequence information to guide backbone sampling with
energetics and experimental data during refinement.



solution is then rescored against the unphased crystal data

(using Phaser’s MR_RNP mode). At this point, if the correct

solution is among the initial set it should easily be identifiable

by score; also, the model should be sufficiently improved so

that interpretation of the model-phased map should be

straightforward with automated chain-tracing and refinement

programs (see, for example, Terwilliger et al., 2008; Langer et

al., 2008; Cowtan, 2006). However, in some cases it still may

not be: in these cases iterating reciprocal-space refinement and

real-space refinement (in Rosetta) may help (as in Valkov et al.,

2011).

Even though the density of the correct solution is often

noisy and suffers from model bias, it still contains some

information. By refining with Rosetta’s physically realistic

force field, we are able to improve the fit to the data while

maintaining physically favorable structural interactions. While

noisy, the density contains sufficient information that it still

may be used to restrict conformation space during sampling.

The combination of two independent sources of information,

the energy function’s measure of physical feasibility combined

with the experimental density data, often leads to conforma-

tions closer to native than the initial model. This improvement

is generally good enough to solve the structure, as was shown

in previous work (DiMaio et al., 2011). The remainder of this

section discusses recent improvements to this method.

2.1. Improved algorithms for model building

One problem with our original approach is the separation

of the backbone-rebuilding and all-atom refinement steps.

As illustrated in Fig. 2(a), unaligned and missing backbone

segments are first rebuilt using a combination of fragment

insertion and geometric loop closure. Only when rebuilding

is complete is the backbone in the aligned region allowed to

move away from the starting conformation. This approach

works well when the template structure is accurate over the

aligned regions and the sequence alignment is also accurate.

Unfortunately, when either of these does not hold Rosetta will

inefficiently sample conformational space, heavily biasing the

search nearby this incorrect conformation. In these cases,

significant sampling is required to the improve models at all;

in the worst case, Rosetta may be unable to improve the initial

model. This is particularly troublesome with errors in

sequence alignment: insertions or deletions within secondary-

structure elements often led to large modeling errors. Addi-

tionally, geometric loop closure frequently led to structures

with unreasonable backbone geometry; this too was aggra-

vated by errors in sequence alignment and small errors in the

template backbone adjacent to these gapped regions.

We have recently developed an alternate strategy that

allows movement in the template structure during modeling.

An overview of this strategy is shown in Fig. 2(b). There are

two key differences compared with our original approach.

Firstly, fragment placement is guided not by setting backbone

torsions and propagating movement towards a cutpoint (as in

Fig. 2a), but rather by superimposing the fragment over the

current backbone conformation. Secondly, the chain-closure

step of Fig. 2(a) is now replaced by Cartesian-space mini-

mization of the entire structure against a smooth (differenti-

able) version of the Rosetta low-resolution energy function,

together with a scoring term that enforces bond geometry.

This low-resolution energy function primarily favors

reasonable backbone geometry (with terms enforcing

Ramachandran preferences, backbone hydrogen bonding and

van der Waals interactions). Since

this energy function only

approximates each side chain

with a relatively soft interaction

center, minimization occurs on

a smoother energy landscape,

allowing larger backbone move-

ments in aligned regions than

does minimization against the all-

atom energy function. By letting

the template backbone move

while gaps are rebuilt, we more

naturally handle errors in the

template, whether owing to

alignment errors or to deviations

between the template and the

target model. Finally, Fig. 2(c)

shows an example where this new

approach yields a superior model:

by letting the residues adjacent

to the gaps move, the approach

maintains the strand geometry

from the template, even though

the sequence alignment was in

error.
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Figure 2
(a) An overview of model rebuilding in our previous approach. (b) In our new approach, model rebuilding
is interspersed with minimization moves, which allow deviations from the template to accommodate the
new fragment. (c) A brief example of how our improved model building may handle small sequence
misalignments. The aligned template (top; cyan) places insertions within a �-strand pairing (native in
black). Our previous approach (middle; yellow) breaks the strand pairing. In our new protocol (bottom;
magenta), by refining the template backbone during rebuilding the strand pairing is kept intact.



2.2. Faster scoring and minimization into density

The original density scoring in Rosetta computes a masked

correlation over a neighborhood around each residue; this

neighborhood mask is updated as the structure refines. We felt

that this formulation was advantageous as the sum of local

correlations naturally handled areas of weaker and stronger

density that might result from a weak initial molecular-

replacement solution. However, this formulation is relatively

slow; normalization over this constantly changing mask was

expensive computationally. By instead performing an

unmasked correlation, we compute the product �calc��obs for a

single atom over the entire map via Fourier-space convolution

(at dense grid sampling) and use tricubic spline interpolation

to very quickly approximate these values and gradients for

each atom in the protein during a refinement trajectory

(similar to the formulation of Chou et al., 2013). This offers

a significant speedup for full-atom refinement, where thou-

sands of score-function evaluations are required.

2.3. Automatic generation of fragments

A second time-consuming step in MR-Rosetta is generating

backbone fragments, which model the conformational diver-

sity of the backbone given the local sequence. These fragments

are used to guide sampling of unaligned regions of the protein

(Figs. 2a and 2b). MR-Rosetta makes use of the same fragment

generation as used in Rosetta ab initio prediction (Gront et al.,

2011), where fragments are chosen using local profile–profile

alignments. For many modeling tasks, such as ab initio struc-

ture prediction, fragment-generation time is inconsequential

compared with the time spent sampling, as fragments only

need be generated once for each modelled sequence.

However, when guided by density, modeling typically

converges quickly and models that improve the phasing

enough to solve the structure may be generated in as few as 20

Monte Carlo trajectories (Terwilliger, DiMaio et al., 2012). In

these cases, the �1 h fragment-generation time may represent

a significant fraction of the overall runtime of the modeling

pipeline.

To handle this, we have added to MR-Rosetta the ability

to quickly generate profile-free fragments on the fly. This

protocol simply computes a BLOSUM-weighted (Henikoff &

Henikoff, 1992) distance between source and target sequence

and selects the best-scoring fragments under this metric. This

offers a fairly significant time reduction, taking only 10 s or

so per fragment, reducing the time required for fragment

generation of an �200-residue protein from about an hour to

a few minutes. This time reduction comes with some cost:

in some cases it may reduce the accuracy of the fragments

generated. The average r.m.s. deviation between predicted

fragments and the native backbone is higher when fragments

are generated from a single sequence than when using profile

and predicted secondary-structure information (Gront et al.,

2011).

3. Results

A benchmark set consisting of nine of the blind cases from the

previous MR-Rosetta study was used. These nine were chosen

to be of a size that allowed a reasonable testing time and had

starting models that made them medium to high difficulty

(based on model–map correlation). In these cases, one of the

correct initial molecular-replacement hits was chosen and used

to phase the data. In each case, a 2mFo � DFc map was built

with phenix.maps (Adams et al., 2010) and models were rebuilt

and refined in Rosetta. For each of the nine targets, 200 models

were generated using the old protocol and 200 with the new

protocol. For the 400 models, we computed model density and

took the correlation between model density and the density

from the final refined structure using phenix.get_cc_mtz_pdb

using a high-resolution limit of 3 Å (no reciprocal-space

refinement was performed prior to computing correlations).

We then compared the distribution of correlations from the

final models with the starting structure.
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Figure 3
A comparison of the previous and new model-building approaches in MR-Rosetta. Plots show the density correlation between models and the
2mFo�DFc density from the final refined structure, where the models are either the template, the MR-Rosetta model using the previous model-building
approach or the MR-Rosetta model using the new model-building approach. The left plot compares the average model quality, while the right plot shows
the selected model quality. Both plots show correlations after one round of model building without reciprocal-space refinement. While most cases show
similar performance, there are three cases in which off-template movement allows more accurate model rebuilding.



The results are summarized in Table 1 and Fig. 3. Fig. 3

compares the correlation of the average sampled model (left)

for the two methods, as well as the selected model (right).

The selected model reports the top correlation of the best five

models according to the Phaser LLG (McCoy et al., 2007).

Table 1 also reports the correlation of the best sampled model

of all 200. Our results show a significant improvement (>0.05

increase in average model correlation) in two of these cases,

both by average sampled correlation as well as selected model

correlation. There is a minor improvement in two other cases

(0.01–0.05 increase in average correlation). In all other cases

the correlation of the average sampled model is within 0.01 of

the previous version. In the two cases where we see significant

improvement, there are portions of the template structure that

align to the target sequence but move significantly in the final

model.

Fig. 4 highlights one of these cases (‘tirap’ in Table 1 and

Fig. 2). Here, there is a large movement between the template

and the final structure in one of the template loops. Our

previous protocol, which only allows the backbone to move in

regions aligned to the template during all-atom refinement,

is unable to correct the model. Our new approach, which lets

the template backbone minimize during rebuilding, places the

loop in a largely correct conformation. The figure shows only

the selected model. However, this movement consistently

occurs in independent modeling trajectories (as indicated by

the large improvement in the average sampled model corre-

lation).

This improved average sampling corresponds to a reduction

in the amount of sampling needed in order to obtain a solution

of high accuracy. Fig. 5 computes the correlation of the

average selected models as a function of the models gener-

ated. The average correlation after N samples is provided as N

ranges from 1 to 40 (above this value, the curve becomes very

flat). As the plot shows, our new approach performs signifi-

cantly better with fewer models generated. On average, using

the new protocol, only five models are needed to achieve an

average correlation within 0.02 of the correlation achievable

with the full 200-sample ensemble.

We also tested our improved sampling algorithms with the

two speedups described in the previous section. The results

are summarized in Table 1. As in the previous experiment, 200

models were generated for each of the nine cases. The first of

these is faster density scoring, which decreases the average

time needed to sample a single model for a 100-residue protein

from�800 to�250 s. As shown in the table, this faster density

scoring slightly improves the average sampled correlation over

the control run; however, the correlation of the best selected

model shows a slight decrease compared with the baseline.

However, for large systems, where the sampling time of a

single model may be prohibitively expensive, this variant may

prove valuable; it is accessed by adding the flag -MR::fast to

the standard MR-Rosetta command line (see Appendix A for

complete command lines).

The second variant tests our faster fragment-generation

method, where sequence alone is used to quickly generate

backbone conformational samples rather then the expensive

sequence profile-based approach of the previous protocol. All
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Table 1
A summary of the results for all data sets in the benchmark.

For each variation of the approach, we report (out of 200 generated structures) the correlation of (i) the average model (Avg. CC); (ii) the best sampled model
(Best CC); and (iii) the best selected model (Sel. CC), where five models are selected using the Phaser LLG. Bold values indicate the highest correlation for each
target. While fast density scoring gives the best models by average and the best correlation, it generally has correlation with the selected model.

Input
MR-Rosetta 2011 MR-Rosetta 2013

MR-Rosetta 2013 with
faster density scoring

MR-Rosetta 2013 with
faster fragment generation

CC Avg. CC Best CC Sel. CC Avg. CC Best CC Sel. CC Avg. CC Best CC Sel. CC Avg. CC Best CC Sel. CC

fj6376 0.103 0.215 0.257 0.251 0.225 0.259 0.242 0.230 0.263 0.249 0.223 0.256 0.256
bfr258e 0.232 0.269 0.395 0.395 0.261 0.373 0.373 0.265 0.365 0.306 0.265 0.382 0.375
ag9603 0.235 0.249 0.268 0.258 0.252 0.279 0.264 0.250 0.276 0.248 0.252 0.279 0.264
hp3342 0.257 0.281 0.317 0.296 0.292 0.312 0.306 0.301 0.320 0.314 0.289 0.311 0.300
xmrv 0.278 0.275 0.330 0.329 0.328 0.364 0.358 0.335 0.380 0.363 0.334 0.379 0.373
tirap 0.284 0.213 0.331 0.314 0.345 0.385 0.377 0.349 0.384 0.374 0.343 0.403 0.403
cab55348 0.287 0.350 0.384 0.381 0.346 0.371 0.366 0.357 0.384 0.371 0.344 0.373 0.373
thio 0.311 0.345 0.382 0.377 0.355 0.373 0.369 0.359 0.383 0.383 0.351 0.376 0.362
pc02153 0.350 0.368 0.397 0.393 0.385 0.412 0.412 0.394 0.417 0.416 0.363 0.403 0.392

Mean 0.260 0.285 0.340 0.333 0.310 0.348 0.341 0.316 0.352 0.336 0.307 0.351 0.344

Figure 4
An example illustrating the improvements allowed by the new model-
building approach. The template model, indicated in black, has a loop
whose conformation is changed in the final model. The previous model-
building approach (in red) was unable to move this loop. Our new
approach (in green) correctly rebuilds this region, giving better
agreement with the final structure (PDB entry 2y92, shown in blue;
Valkov et al., 2011).



other steps of the algorithm remain unchanged. As Table 1

illustrates, this new method of fragment generation also shows

no loss in final model accuracy. This may not be too surprising

as, unlike in ab initio prediction, fragments in MR-Rosetta are

primarily used to sample the conformation of relatively short

backbone segments, where the geometry of the adjacent

backbone residues makes sampling very constrained. Thus,

a small decrease in fragment accuracy may not affect the

sampling to an appreciable degree.

4. Discussion and conclusions

We have described several modifications to MR-Rosetta that

allow improved model building and refinement against density

data resulting from weak molecular-replacement solutions.

The key improvement of our new approach is refinement of

the template backbone during the rebuilding stages, which is

better suited for handling large movements of the template

backbone, as well as smoothly resolving small alignment

errors. In cases where the template and sequence alignments

are reasonably accurate, we see minimal improvement in the

generated models; in other cases we see large improvements.

We also introduce two improvements to MR-Rosetta that

allow much faster model generation without reducing model

quality.

Our new rebuilding method offers two key advantages

compared with our previous approach. Firstly, by allowing

low-resolution minimization during rebuilding, the template

may move to better satisfy the density data. The low-

resolution energy function in this stage presents fewer ener-

getic barriers as we move the backbone to better satisfy the

density. Secondly, minimization allows residues adjacent to

those being rebuilt to move slightly, which leads to less

strained loop geometry (better Ramachandran probabilities

and reduced out-of-plane peptide-bond movement) compared

with the geometric closure of our previous approach. Finally,

both speedups that we have introduced show no loss (or

minimal loss) in model accuracy with significant runtime

savings.

A weakness of our approach is that template-backbone

movement is still handled largely though minimization,

making the method susceptible to becoming stuck in local

minima. However, recent work by Terwilliger, Read et al.

(2012) escapes local minima in density refinement by explicitly

searching local neighborhoods in the density and using these

results to perturb the structure. It should be straightforward to

make use of this strategy in MR-Rosetta: the search directions

resulting from this local search can be incorporated as

restraints during standard MR-Rosetta refinement. This tool

should be complementary to MR-Rosetta refinement; the

Rosetta energy function maintains a physically realistic model,

while the local density search would pull the model out from

local minima.

The improvements in modeling into density resulting from

distant molecular-replacement solutions outlined in this paper

should serve to further increase the radius of convergence

of molecular replacement. By better handling small errors

in sequence alignment, the new approach should improve the

modeling of molecular-replacement solutions with very low

sequence identity (15% or lower). These advancements, along

with those proposed, should allow even greater application of

these methods in solving crystallographic data sets.

APPENDIX A
MR-Rosetta command lines

MR-Rosetta is available from http://www.rosettacommons.org

and is free to academic users. The methods described in this

paper are available beginning with version 3.6 or weekly

releases after 1 September 2013.

The command line used to run default MR-Rosetta (2013) is

To enable faster evaluation of density agreement, the flag

-MR::fast is added to the command line and -edensity:

grid_spacing 1.5 should be changed to -edensity:

grid_spacing 1.0.

Finally, to enable automatic fragment generation, simply

omit the line -loops::frag_files. These two options may be

used together.
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